æ

*** TRANSMISSION REPORT ***

JUN-15-98 09:27 ID:312 353 4342

USEPA REGION 5

JOB NUMBER

519

INFORMATION CODE

ok

TELEPHONE NUMBER

919068638425

NAME(ID NUMBER)

Dales

START TIME

JUN-15-98 09:26

PAGES TRANSMITTED

002

TRANSMISSION MODE

G3

RESOLUTION

STD

REDIALING TIMES

00

SECURITY

OFF

MAILBOX

OFF

MACHINE ENGAGED

01'00

THIS TRANSMISSION IS COMPLETED.

LAST SUCCESSFUL PAGE

002

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-9590

office/felephone of recipient: 906 863 9534	MACHINE NO. 906 863 8435
TO: Dale Paper, Sr	
FROM: Diane Share	~ow
TELEPHONE NUMBER (FTS of	commercial): 312-860-6199
COMMENTS:	
DATE: 6 15 98	·
PLEASE	NUMBER ALL PAGES
NUMBER OF PAGES, INCLUDE	ING COVER SHEET: PAGE OF
	STANDARD ST TO STANDARD

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5
77 WEST JACKSON BOULEVARD
CHICAGO, IL 60604-3590

FACSIMILE REQUEST AND COVER SHEET						
FTS: 353-4342 METCALFE FEDERAL BUILDING COMM: 312/353-4342 VERIFICATION NO. 353-3808						
OFFICE/TELEPHONE MACHINE NO. 9068638435 OF RECIPIENT: 9068639534						
TO: Dale Paper, Sr.						
FROM: Diane Sharrow						
TELEPHONE NUMBER (FTS or commercial): 312 -86-10199						
COMMENTS:						
DATE: 6 15 98						
PLEASE NUMBER ALL PAGES						
NUMBER OF PAGES, INCLUDING COVER SHEET: PAGE OF						

BY FACSIMILE: 15 June 1998

Mr. Dale K. Pape, Jr. 906-863-8425

I have been out of the office and have just returned this morning. Because I was out in the field, I just received your faxes that requested split sampling and document review. I tried to call you at the number listed on your faxes and there was no answer, so that is why I am sending this reply by facsimile. If you have any questions or concerns, please call me at -312-886-6199.

Let me make clear, that neither I or the USEPA are unwilling to discuss the Manistique Paper (MPI) RMA. You are welcome to review USEPA's files under the Freedom of Information Act. But you need to contact Wendy Schumacher, the Chicago FOIA Officer, at 312-886-0182 to arrange the review. All RCRA files on MPI's RMA are in the RCRA File Room, except for those that are enforcement sensitive. There may also be files on MPI in the Superfund File Room and the Water Division File Room, but I am not sure whether any of these files contain info on the RMA; they would mostly be on the Harbor and the NPDES permit. The RCRA enforcement sensitive files are not available to MPI or the public due to USEPA's ongoing investigation of the RMA, and these files are in my possession.

The USEPA has only released the RCRA sampling results from the November 1997 sampling inspection; the report from this RCRA sampling inspection is draft and has not been finalized. USEPA intends to finalize the report once the RCRA sampling inspection results from the June 1998 re-sampling are analyzed and reviewed.

Once again, if you have any questions, please contact me.

Diane Sharrow Environmental Scientist

BITTNER ENGINEERING, INC.

113 SOUTH 10TH STREET, ESCANABA, MICHIGAN 49829 + 906-789-1511

May 20, 1994

Mr. Duane Roskoskey, Environmental Quality Analyst Michigan Department of Natural Resources F.O. Box 30241 Lansing, MI 48909

RE:

Manistique Papers' Inert Designation

Request

Dear Mr. Roskoskey:

You will recall we had a telephone conversation in early April in which we discussed your concerns about aluminum and manganese. Based on that conversation, and prior to receiving your letter of April 27, 1994, we collected several background samples of clay from locations in Ontonagon and Munising and tested them for aluminum. These locations were selected because clay from Ontonagon and Munising is used for landfill liner and cover throughout the Upper Peninsula. In addition we tested a common over-the-counter antacid, Maalox, and two synthetic clays -- Gunseal Bentonite and Eento-mat Bentonite for their aluminum content.

As you can see from the chart below, the results confirm that the level of aluminum found in Manistique's residuals is well below that found naturally occurring in Upper Peninsula clay. The results from the testing of Gunseal indicate that the levels of aluminum in Manistique's residuals are approximately the same as those in Gunseal and the aluminum levels in the Bento-mat are higher than Manistique's residuals. Perhaps the most surprising result is the level of aluminum found in Maalox—an antacid that is ingested daily by millions of people.

ALUMINUM TEST RESULTS MAY 1994

SOURCE	TOTAL COMPOSITION ANALYSIS	SYN PCPT. <u>LEACHING PROC</u>		
Ontonagon Clay	15,000 mg/kg	4.4	mg/l	
Munising Clay	14,000 mg/kg	4,5	mg/l	
Gunseal Bentonite	6,200 mg/kg	16	mg/l	
Bento-mat Bentonite	9,100 mg/kg	1.3	mg/l	
Maalox	54,000 mg/kg	20	mg/l	
Manistique's Residuals	6,870 mg/kg	0.65	mg/l	

Mr. Duane Roskoskey May 20, 1994 Page 2

With results like these, any other conclusion but that Manistique's residuals are inert would be absurd: Are all the natural clay lined and covered landfills in the Upper Peninsula actually 307 sites because of their aluminum content? Is the supposed health-based risk standard attributed to aluminum not applicable to an over-the-counter drug ingested on a daily basis? Surely the answer to these questions is "no."

Even though the samples were taken prior to receiving your April 27 letter discussing the guidelines for developing background samples, we believe these results are strong support for our petition for inertness designation for Manistique's residuals. Obviously, if we would have had these results earlier, it would have made both our jobs much easier.

I will call you in the next several days after you have had a chance to review these results.

Dennis B. Bittner, P.E.

Project Manager

DBB/jr

cc; Mr. Frank Opolka, Deputy Director

Mr. Jack Rydquist, SWQD

Mr. Robert Schmeling, II

Mr. Karl Zollner

Mr. John Craig

Mr. Leif Christensen

Mr. James Cook

Mr. Jason Panek

Mr. Tom Arnold

BITTNER ENGINEERING, INC.

614 LUDINGTON STREET, ESCANABA, MICHIGAN 49829 • 906-789-1511

September 17, 1987

Mr. Clif Clark Waste Management Division Michigan Department of Natural Resources 1990 U. S. 41 South Marquette, Michigan 49855

RE: Manistique Paper's Landfill

Hydrogeo Study

Dear Clif:

This letter is written in response to your May 21, 1987 letter on this subject. The following comments appear in the same order as the comments of your letter.

- 1. Concur.
- 2. The samples for leachate analysis were prepared by the procedure of ASTM D3987-85 Shake Extraction of Solid Waste With Water. Additional information on the analytical procedures is contained in the attached report entitled ASTM Water Leachate Report On Soil Samples For Bittner Engineering, Inc., Escanaba, Michigan, March 1987. This method was selected as being the most appropriate to determine if the material is suitable for Type III landfilling. Samples were composited in the laboratory according to accepted procedures.

Samples were composited from all individual samples collected at 5' intervals at boring locations. The reason why some composite samples had more individual samples is that the depth of drilling varied according to the height of the landfill at the boring locations. A map showing the boring locations is included. Borings were advanced through the bottom of the waste and into the native soil in all instances.

3. Total organic carbon and dissolved manganese were analyzed at a later date at representative locations. Sample results are as follows:

Mr. Clif Clark September 17, 1987 Page 2

Sample Location	TOC (mg/1)	Dissolved Manganese (mg/l)
K L	57 44	0.066 <0.02
М	19	0.028

Samples have not been analyzed for PCB's on a dry-weight basis. In addition to the fact that it was not recommended in Schmeling's July 2. 1986 letter approving the work study plan, we feel that the results of extensive PCB testing which has been performed on the process wastewater over the years along with the comprehensive leachate testing that has recently been completed indicate that PCB's are not a concern in the mill's solid waste and therefore such testing is not warranted.

In particular, the waste activated sludge has been analyzed for the presence of PCB's. As the attached results show no PCB's were present. The only additional processing of waste activated sludge prior to landfilling is removal of water. Therefore, the results of waste activated sludge sampling for PCB's are representative of the material being landfilled.

- Samples of wastes to be disposed at the site have been analyzed according to your comment. The results will be included in the hydrogeological study.
- 6. Concur
- 7. It is our intention to collect a single set of samples from the observation wells to be submitted with the hydrogeo study and the permit application. The observation wells that will be permanently installed will then be sampled at the frequency necessary to fulfill the requirements of the permit. Please advise if my thinking is incorrect in this matter.

If you have any guestions, please feel free to contact me.

Sincerely, Butter

Dennis B. Bittner, P. E.

Project Manager

Enclosures

CC: Leif Christensen Jim Cook

Alan Wasserman

U.P. ENGINEERING AND ARCHITECTURAL ASSOCIATES, Inc. 614 LUDINGTON, ESCANABA, MICHIGAN 49829 • (906) 786-8881

RECEIVED

February 9, 1987

FFR 10 1987

Marquette Dist. G.Q.D.

Mr. Robert Schmeling, P. E. Michigan Department of Natural Resources 1990 U. S. 41 South Marquette, Michigan 49855

> RE: Manistique Papers, Inc. Hydrogeological Study

Dear Bob:

As a follow up to our recent telephone conversation, I am proposing the following physical and chemical testing on soil and sludge samples collected during the soil boring phase of this project.

By way of review, we have performed borings at 17 locations. At six of the locations we installed observation wells with screens set in the water table in the unconfined aquifer. Five of the 17 boring locations were in areas of landfilled sludge.

We propose to perform the following analyses:

Soil Locations

- In-site horizontal permability tests at the 6 well locations.
- Cation exchange capacities at the 6 well locations in the upper 10' of soil.
- Sieve analyses at 6 boring locations at 5' intervals.
- Description of soils from auger bit and split spoon samples by trained technicians at 5' intervals at all locations (already completed).

Wr

Sludge

- Permeability analysis at each of the boring locations from shelby tube samples collected at a range of depths. This should provide a range of permeabilities encountered at the site.
- Leachate analysis from laboratory composited samples of the 5 sampling intervals.

HOUGHTON . NORWAY . ESCANABA

THE REAL PROPERTY.

Mr. Robert Schmeling, P. E. February 9, 1987 Page 2

- analysis of the leachate for parameters previously discussed.

Planes contact me as soon as your review is completed so that our data only still efforts may proceed according to schedule.

العاصية والمصافة

Bonnie B. Birtner, P. E.
Associate

f . 1 ±

U. P. Engineering and Architectural Associates, Inc.

Miller January C

and C

angule.

MICHIGAN DEPARTMENT OF NATURAL RESOURCES

INTEROFFICE COMMUNICATION

Marquette, Michigan October 16,1989

TO:

Sheila Meier, Environmental Engineer, WMD

FROM:

Carl L. Smith, Geologist, WMD

SUBJECT: Manistique Papers Sampling Review

I have completed my review of Manistique Papers submittal concerning their sampling and analytical procedures by Bittner Engineering dated October 2, 1989. I am concerned that there is a serious possibility for with regard to the procedures listed on page 2 under the heading "Preparatory Cleaning of Sampling Equipment" it is indicated that "Samples will be transferred directly to containers which have been cleaned and prepared by the laboratory". Then on page 2 under the heading "Processing of Samples" it is stated "Any samples requiring preservation will have preservatives applied to the sample bottles at the laboratory." This provides the opportunity for sampling personnel to make the mistake of adding a sample to an acidified sampling container then filtering that sample and reporting the results as dissolved vs total metals. Preservatives should be added in the field only after any necessary filtering to prevent this type of mistake from occurring. Care should be taken to insure the purity of any preservatives used. Samples should be filtered and preserved no more than one hour after purging.

With regard to the appropriateness of the laboratory analytical procedures, I have requested a review by Mr. G. Su of our environmental laboratory in Lansing. He has stated that he will advise this office of his findings no later than October 23, 1989.

In my hydrostudy review dated April 26.1988 I mentioned the fact that the underlying bedrock is very near the surface and qualifies as a useable aquifer. According to the groundwater contour map, provided with the hydrostudy, groundwater does flow into and conversely out of the landfill. If the landfilled material does not qualify as inert this item could prove to be the critical one.

I have taken the liberty of including with this memo some stiff, piper trilinear and pie diagrams of some of the well data that was submitted over a year ago. From the trends shown it appears obvious that the material in the landfill is causing a very serious effect on the local groundwater quality. We should request an analysis of the leachate for the expanded annual list of parameters (which I can provide) and then perform a detailed review of any trends which appear to be migrating toward the character of the leachate. Again, we should be concerned about not only serious contamination but about various degrees of groundwater degradation as well.

Fruit

cc:RSII

BITTNER ENGINEERING, INC.

RECEIVED

October 2, 1989

OCT -6 1989

Marquette Dist. W.M.D.

Mr. Robert Schmeling II
Regional Supervisor
Waste Management Division
Michigan Department of Natural Resources
1990 U. S. 41 South
Marquette, Michigan 49855

RE: Manistique Papers, Inc.
Monitoring Plan

Dear Mr. Schmeling:

We have received your September 1, 1989 letter of response to our May 3, 1989 proposal for monitoring and waste characterization plans at Manistique Papers, Inc. Residuals Management Site. The following explanations are furnished in response to your request for additional information regarding sampling and analytical procedures. In general, we will follow procedures discussed in "RCRA - Groundwater Monitoring Technical Enforcement Guidance Document", September 1986. Following is a more specific discussion of our procedures.

IDENTIFICATION OF SAMPLING POINTS

The monitoring program lists 8 well locations and 4 surface water sampling locations. Monitoring wells are identified as W-1 through W-8 and will have the identification numbers clearly printed on the well casing. The surface water sampling locations, R-1, R-2, R-3 and G-1 will be established after preliminary field reconnaissance and the locations will be marked by flagging and painting on trees or stakes located along the shore.

PREPARATION FOR SAMPLING

Prior to sampling, each well will be evacuated using a Teflon bailer. An attempt will be made to remove 3 volumes of water from each well prior to sampling. Wells that do not produce a sufficient flow of groundwater to allow removal of 3 volumes will be bailed dry a single time. Samples will be collected within a short time after the wells recover to the original level.

Surface water sampling locations will be reviewed prior to each sampling to determine the existence of free flowing conditions.

Mr. Robert Schmeling II October 2, 1989 Page 2

PREPARATORY CLEANING OF SAMPLING EQUIPMENT

A Teflon bailer with single check valve will be used to purge wells and for withdrawing samples from wells. Preparatory cleaning will consist of washing the bailer and Teflon coated cable with 10% acetone 90% distilled water solution followed by triple rinsing with distilled water. Samples will be transferred directly to containers which have been cleaned and prepared by the laboratory.

Surface water samples will be collected directly in containers provided by the laboratory.

FIELD MEASUREMENTS

Samples for pH, specific conductance, static water level and temperature will be analyzed in the field at the time of sample collection.

Static water levels will be recorded using a steel tape to the nearest 0.01'. Levels will be determined prior to bailing of wells.

The other field tests will be performed on samples obtained from the bailer and transferred to a separate container. Test probes will not be inserted into sample bottles being forwarded to the laboratory for analysis.

Field test equipment will be cleaned in accordance with manufacturer's recommendations and the procedures outlined in "Preparatory Cleaning of Sampling Equipment" of this letter.

PROCESSING OF SAMPLES

Any samples requiring preservation will have preservatives applied to the sample bottles at the laboratory.

Field filtering of samples for dissolved metals will be performed in Manistique Papers, Inc.'s laboratory about a 10 minute trip from the sampling locations. Filtering will be done immediately after sample collection by Bittner Engineering personnel.

All samples will be immediately placed in coolers containing frozen ice packs and ice to bring samples to the required holding temperature as quickly as possible. Prior to shipping to the laboratory, a sufficient number of frozen ice packs will be placed in the cooler and the lid will be tightly sealed. The coolers will be shipped to Western Michigan Environmental Services (WMES) in Holland, Michigan via UPS overnight shipping.

Mr. Robert Schmeling II October 2, 1989 Page 3

SAMPLING QA/QC MEASURES

- The sample bottles will be labeled prior to mobilizing for sampling. The labeling will be carefully checked in the field to verify that the labeling corresponds to the well or surface water numbering system.
- Care will be taken to keep the decontaminated sampling equipment from coming in contact with the ground or other potential sources of contamination.
- The well sampling order will begin with the upgradient wells and move to the wells the greatest distance downstream and conclude with the downstream well nearest to the residuals site.
- Portable meters for determining pH and specific conductance values will be calibrated at the beginning and the conclusion of each day's sampling program.
- Samples of the final rinse water from the bailer will be collected on each day of sampling. This sample will be labeled "Bailer Blank" and will be submitted for the complete list of analyses for this project.

LABORATORY

All samples, other than those analyzed in the field will be tested by WMES.

Test methods and laboratory QA/QC procedures are listed in correspondence from WMES (attached).

We will add COD and carbonate as ${\rm CO_3}$ to the original list of parameters contained in my May 3, 1989 letter.

I trust that upon receipt of this additional information, that you will be able to grant final approval to the monitoring program. Your timely approval will enable us to collect 3 representative samples prior to winter.

WASTE CHARACTERIZATION PLAN

Since we have not received a response to the waste characterization plan contained in our May 3, 1989 letter, we are not responding to the comments of your September 1st letter dealing with this subject. I am concerned that we have not received a response from the Waste Characterization Unit regarding our Waste Characterization Plan. This delay is hampering our ability to

Mr. Robert Schmeling II October 2, 1989 Page 4

address the permit requirements for the Residuals Management Site. It has been our understanding that this review is being coordinated by your office and that we should direct all inquiries to you. Please advise me if this is the case and when we can expect a response to the Waste Characterization Plan.

If you have any questions, please feel free to contact me.

Sinceraly.

Dennis B. Bittner, P. E.

Project Manager

Enclosure

CC: Leif Christensen w/enclosure
Jim Cook w/enclosure
Joe Polito w/enclosure
Dave Dennis w/enclosure
DBB/sb Frank Opolka w/enclosure

WESTERN MICHIGAN ENVIRONMENTAL SERVICES, INC.

SENT TO:

Bittner Engineering, Inc. 113 South 10th Street Escanaba, Michigan 49829

Attn: Dennis Bittner Re: Manistique Papars

DATE:

August 24, 1993

ANALYSIS OF:

Sludge Samples

REPORTED BY:

Robert K. Zahray, Laboratory Manager

DATE RECEIVED:

Received from client on July 10, 1995

Sample ID: Press Sludge, Total

Lab ID: 9:07236-01

A PROPOSITION OF THE PROPERTY OF THE PROPERTY

TEST			RESULT	UNITS	VHYTA SED	ВY	METHOD	MDL
Total Solids Acid Digestion, Aluminum Manganese	Solid		38.1 08/05/93 3,300 22	% of sample date digeared mg/kg dry wt. mg/kg dry wt.	08/13/93 08/19/93 08/18/93	нан	APHA 2540 B. EPA 3050 EPA 6010 EPA 6010	N/A 2.5 0.050

Sample ID: Press Sludge, Leachate

Lah 10: 0407236-02

			-1 - 5	·		~~~~~~~
TEST	RESULT	UNITE	AMALYZED	HA	МЕТНОВ	MDL
Syn. Popt. Leaching Proc. Acid Digestion, Aqueous Aluminum Manganese	08/02/93 08/04/93 0.58 0.038	date extracted date dingested mg/L	08/19/93 08/19/93	JA MBR MBR MBR	EPA 1312 EPA 3010 EPA 6010 EPA 6010	0.05 0.001

WESTERN MICHIGAN ENVIRONMENTAL SERVICES, INC.

1377 - Papi Avenue, Holland, Michigan 49424 9263.
 Phone: 616-399-6070 - FAX: 616-399-6185.

SENT TO

Bittner Engineering, Inc. 1113 South 10th Street Escanaba, Michigan 49820

Attn: Dennis Bittner
Re: Manistique Papero

DATE:

August 20, 1993

ANALYSIS OF:

Sludge Samples

REPORTED BY:

Robert K. Zahray, Laboratory Manager

DATE RECEIVED:

Received from client on August 6, 1991.

Sample ID: Press Sludge, Total

Lab 10: 3 (08051-01)

			4	π 			
TEST	2	RESULT	UNITS	analy zed	BY	METHOD	MDL
				-			
Total Solids		36.4	% of sample	08/11/93	HLM	APHA 2540 B.	N/A
Acid Digestion,	Solid	08/13/93	date diquered		HBR	EPA 3050	
Aluminum		2,300	mg/kg dry wt.	a 8/1 9/93	HBR	EPA 6010	2.5
Manganese		34	mg/kg dry wt	08/17/93	MBR	EPA 6010	0.05

Sample ID: Press Sludge, Leachate

- 5a6 (D) 9 (Ú8061-02)

ر الروايين المراجع الم المراجع المراجع	(2) The state of t					
TEST	RESULT	UNITS	ANALYZED	\mathbf{FA}_{i}	METHOD	MDL
Syn. Pcpt. Leaching Proc. Acid Digestion, Aqueous Aluminum Manganese	08/10/93 08/14/93 0.42 0.16	date oxtraction date digested mg/L	08/10/93 08/19/93	MBH MBH GTK	EPA 1312 EPA 3010 EPA 6010 EPA 6010	0.05 0.001

EES 138th Avenue: Holland, Michigan 49424-9263 Phone: 616-399-6070 TAX 616-399-6185

SENT TO:

Bittner Engineering, Inc. 113 South 13th Street Bacanaba, Michigan 49829

Attn: Dennis Bittner Re: Manistique Paper

DATE:

September 16, 1993

ANALYSIS OF:

Sludge Sample

REPORTED BY:

Robert K. Zahray, Laboratory Manager

DATE RECEIVED:

Received from client on August 11, 1991.

Sample ID: Press Sludge, Total

Lab ID: 9408103-01

TEST RESULT UNITE ANALYSED BY METHOD I	ÆDL
Total Solids 37.1 % of sample 08/17/93 MJR : APHA 2540 B.	N/A
Acid Digestion, Solid 08/17/93 date digested JA EPA 3050	
Aluminum 5,000 mg/kg dry wt 08/19/93 MBR EPA 6010	2.5
Manganese 17 mg/kg dry wt . 08/19/93 MBR EPA 6010	0.5

Sample ID: Press Sludge, Leachate

Lab ID: 9/08103-02

properties to properties the properties of the property of the properties of the pro			<u> </u>			
TEST	RESULT	UNITS	analy zed	BY	METHOD	MDL
		-	·			
Syn. Popt. Leaching Proc.	08/17/93	date extracted	HB/17/93	WS	EPA 1312	
Acid Digestion, Aqueous	08/24/93	date digested		JA	EPA 3010	
Aluminum	0.19	mg/L	69/14/93	CJK	EPA 6010	0.05
Manganese	0.054	mg/L	69/14/93	CJK	EPA 6010	0.001

3 178th Avenue, Holland, Michigan 49424-9263 Phone: 616-399-6070 FAX, 616-399-6185

SENT TO:

Bittner Engineering, Inc. 113 South 13th Street Escanaba, Michigan 49829

Attn: Dennis Bittner
Re: Maniatique Papers

DATE:

September 21, 1993

ANALYSIS OF:

Sludge Samples

REPORTED BY:

Whert K. Zahray, Laboratory Manager

DATE RECEIVED:

Received from client on August 20, 1993

Sample ID: Press Sludge, Total

Lab ID: 9308157-01

TEST	RESULT	UNITS	ANALYZED	BY	METHOD	MDL
Total Solids Acid Digestion, Solid	38.1 08/25/93	% of sample date digested	OB/25/93	MJR JA	APHA 2540 B. EPA 3050	N/A
Aluminum Manganese	14,000	mg/kg dry wr. mg/kg dry wr.	09/17/93 09/14/93	CJK CJK	EPA 6010 EPA 6010	50 0.050

Sample ID: Press Sludge, Leachate

lab (D: 9308157-02

						
TEST	RESULT	UNITS	ANALYZED	BY	METHOD	MDL
Syn. Popt. Leaching Proc. Acid Digestion, Aqueous Aluminum Manganese	08/24/93 08/24/93 1.3 0.099	date extracted date digested mg/L mg/L	0n/24/93 09/14/93 09/14/93	WS JA CJK CJR	EPA 1312 EPA 3010 EPA 6010 EPA G010	0.05 0.001

3 (52 178) Avenue, Holland, Michigan 49424-926 Phone: 61 6-399-6070 FAX 616-399-6185

SENT TO:

Bittner Engineering, Inc. 113 South 10th Street Escanaba, Michigan 49829

Attn: Dennis Bittner Ro: Manistique Papers

DATE:

September 27, 1993

ANALYSIS OF:

Sludge Sample

י אם החשתים בעי

Robert K. Zahray, Laboratory Manage

DATE RECEIVED:

Received from client on August 17

Sample ID: Fress Sludge Comp., Total

- Lab 三 Di 宏語 108 L99=01

	Solids		36.6	Veof samp	指數學是50/	01/93 MJR	APHA-2540	B. N/A
	Digestion,		08/31/93	date dige	- 東京 - 1911年	CIK.	1000	2. 在内部设施的多数的产品的设施的。2. 人工,10. 1 · 1 · 1
Alumi	num significa		10,000	mg/kg dry		17/93 建CJK		
Hanga	INGBO ZEMENT		34	mg/kg dry	wr - 50%	14/93 CJK	EPA 6010	30.050
	13日本語 14	HIME THE SECOND			李精度的 由於在	· 考虑。 特定规则		学长沙里里的
	于新聞出			1 5 THE P. LEWIS CO.	all the state of			过行。如何的特别
Sampl	e ID: Pres	s Sludge Com	. Leach.	Lab	ID: 9408	199-02 編集制金	生产物質調度	
- was 1 **	of the east 1 fell that a section is					<u> </u>	·	
TEST	1991年時間1	Marin Marin	RESULT	UNITS	ANA	LYZED BY	METHOD	A SARAH MOL
Librard.	上。日刊新聞書	特別的 100 1994年				1 jan 65 jan 4 jan	p as a star	(相關情報所) 三京縣()
	上 4、1月期計論門11年第一。	A Filter of the America		194.4		42 30 30 4 4 5 1 1 1 1 1		5.智慧/读·切开 建凝煤所

TEST	UNITS ANALYZED BY METHOD MDL
Syn. Pcpt. Leaching Proc. 08/31/93	date extracted MBR EPA 1312
Acid Digestion, Aqueous 09/06/93	date digostal JA EPA 3010
Aluminum 0.20	mg/t. CJK EPA 6010
Manganese 0.083	mg/L 13/14/93 CJK EPA 6010 0.001

Note: Composite of samples taken August 23 - 26, 1993.

4942 F28th Avenue, Flolland, Michigan 49424-9263 Phone: 616-399-6070 TAX 616-399-6185

FAX COVER SHEET

Date: 11/03	13 Time: 9:25 am
PLEASE DELIVER THE FO	LLOWING PAGES TO
Name: Company: FAX Number: WMESI Number:	DENNIS BITTNER BITTNER ENGWEERING (906) 2728-4329 -> HOWORY TWO (MANGUETTE 9307236, 9308061, 9308103, 9308157, 9308199
From:	Jon BENMISH
WE ARE TRANSMITTING	HIS COVER SHEET PLUS 5 PAGE(S)

PHONE: (616) 399-6070

FAX: (616) 399-6185

ADDRESS: 3352 128th Avenue

Holland, Michigan 49424 - 9263

If this transmission is not complete, please call: 1941 DEAMISH

TRANSMITTEDFOR:

Your Appi	oval	Your Inform	ration	Your Comn	nents
Your Revisions	Additions	Your Reco	ords 1	Per Your Re	quest
Other/Com	nents			. ,	
	PAEAS	E CALL IF V	VE. CAN COM	OF ANY MOSE	HERD
		Charles and the Control of the Contr	2 mass: 172 1 2:11 mg. 165:	gain (in the state and an	
				< Ina	
\$1.1 M			· · · · · · · · · · · · · · · · · · ·		
		- The second		المعوود المستحد المستح	

WESTERN MICHIGAN ENVIRONMENTAL SERVICES, INC.

3th Avenue, Holland, Michigan 49424-9263 Phone: 616-399-6070 FAX: 616-399-6185

SE... TO:

Bittner Engineering, Inc. 113 South 10th Street

Escanaba, Michigan 49829

Dennis Bittner

Manistique Papers Inc.

DATE:

August 20, 1993

ANALYSIS OF:

Water Samples

REPORTED BY:

Robert K. Zahray, Laboratory Manager

DATE RECEIVED:

Received from client on August 4, 1993.

Sample ID: R-1

Lab ID: 9308031-01

TEST	RESULT	UNITS	ANALYZED	ВЧ	METHOD	MDL
Alkalinity (as CaCO3)	58.0	mg/L	08/09/93	GCB	APHA 2320 B.	2.0
Bicarbonate (as CaCO3)	57.5	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Carbonate as CaCO3	BDL	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Chemical Oxygen Demand	45	mg/L	08/09/93	WS	EPA 410.4	10
Chloride	1.4	mg/L	08/05/93	MBR	EPA 300.0	0.1
Sulfate	9.8	mg/L	08/05/93	MBR	EPA 300.0	0.1
Total Organic Carbon	16	mg/L	08/05/93	MBR	EPA 9060	1.0
Total Phenois	\mathtt{BDL}	mg/L	08/13/93	MBR	EPA 9065	0.005
Acid Digestion, Aqueous	08/05/93	date d	igested	MBR	EPA 3010	
Calcium	22	mg/L	08/16/93	MBR	EPA 7140	0.02
Copper	BDL	mg/L	08/13/93	WS	EPA 7210	0.02
Iron	2.4	mg/L	08/17/93	MBR	EPA 7380	0.03
Lead	BDL	mg/L	08/10/93	JA	EPA 7421	0.001
Magnesium	5.4	mg/L	08/16/93	MBR	EPA 7450	0.07
Manganese	0.014	mg/L	08/17/93	MBR	EPA 6010	0.001
Sodíum	2.9	mg/L	08/16/93	MBR	EPA 7770	0.05
Zinc	0.05	mg/L	08/16/93	JA	EPA 7950	0.01

Sample ID: R-2

T	RESULT	UNITS	ANALYZED	ВΥ	METHOD	MDL
Alkalinity (as CaCO3)	62.0	mq/L	08/09/93	GCB	АРНА 2320 В.	2.0
Bicarbonate (as CaCO3)	61.4	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Carbonate as CaCO3	BDL	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Chemical Oxygen Demand	49	mg/L	08/09/93	WS	EPA 410.4	10
Chloride	1.4	mg/L	08/05/93	MBR	EPA 300.0	0.1
Sulfate	9.8	mg/L	08/05/93	MBR	EPA 300.0	0.1
Total Organic Carbon	16	mq/L	08/05/93	MBR	EPA 9060	1.0
Total Phenols	BDL	mg/L	08/13/93	MBR	EPA 9065	0.005
Acid Digestion, Aqueous	08/05/93		digested	MBR	EPA 3010	
Calcium	21	mq/L	08/16/93	MBR	EPA 7140	0.02
Copper	BDL	mg/L	08/13/93	ws	EPA 7210	0.02
Iron	2.6	mg/L	08/17/93	MBR	EPA 7380	0.03
Lead	BDL	mq/L	08/12/93	JA	EPA 7421	0.001
Magnesium	5.2	mg/L	08/16/93	MBR	EPA 7450	0.07
Manganese	0.014	mg/L	08/17/93	MBR	EPA 6010	0.001
Sodium	2.6	mg/L	08/16/93	MBR	EPA 7770	0.05
Zinc	0.04	mq/L	08/16/93	JA	EPA 7950	0.01

Sample ID: R-3

	RESULT	UNITS	ANALYZED	вч	METHOD	MDL
Alkalinity (as CaCO3)	66.0	mg/L	08/09/93	GCB	АРНА 2320 В.	2.0
Bicarbonate (as CaCO3)	65.4	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Carbonate as CaCO3	BDL	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Chemical Oxygen Demand	46	mg/L	08/09/93	₩S	EPA 410.4	10
Chloride	1.4	mg/L	08/05/93	MBR	EPA 300.0	0.1
Sulfate	9.8	mg/L	08/05/93	MBR	EPA 300.0	0.1
Total Organic Carbon	. 16	mg/L	08/05/93	MBR	EPA 9060	1.0
Total Phenols	BDL	mg/L	08/13/93	MBR	EPA 9065	0.005
Acid Digestion, Aqueous	08/05/93	date	digested	MBR	EPA 3010	
Calcium	22	mg/L	08/16/93	MBR	EPA 7140	0.02
Copper	BDL	mg/L	08/13/93	WS	EPA 7210	0.02
Iron	2.8	mg/L	08/17/93	MBR	EPA 7380	0.03
Lead	BDL	mq/L	08/10/93	JA	EPA 7421	0.001
Magnesium	5.3	mg/L	08/16/93	MBR	EPA 7450	0.07
Manganese	0.015	mg/L	08/17/93	MBR	EPA 6010	0.001
Sodium	3.5	mg/L	08/16/93	MBR	EPA 7770	0.05
Zinc	0.04	mg/L	08/16/93	JA	EPA 7950	0.01

Sample ID: G-1

OFFICE AND ADDRESS OF THE PROPERTY OF THE PROP						
19	RESULT	UNITS	ANALYZED	BY	METHOD	MDL
Alkalinity (as CaCO3)	242	mg/L	08/09/93	GCB	АРНА 2320 В.	2.0
Bicarbonate (as CaCO3)	235	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Carbonate as CaCO3	6.8	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Chemical Oxygen Demand	54	mg/L	08/09/93	WS	EPA 410.4	10
Chloride	9.8	mg/L	08/05/93	MBR	EPA 300.0	0.1
Sulfate	1.0	mg/L	08/05/93	MBR	EPA 300.0	0.1
Total Organic Carbon	20	mg/L	08/05/93	MBR	EPA 9060	1.0
Total Phenols	BDL	mg/L	08/13/93	MBR	EPA 9065	0.005
Acid Digestion, Aqueous	08/05/93		digested	MBR	EPA 3010	
Calcium	81	mg/L	08/16/93	MBR	EPA 7140	0.02
Copper	BDL	mg/L	08/13/93	WS	EPA 7210	0.02
Iron	0.31	mg/L	08/17/93	MBR	EPA 7380	0.03
Lead	BDL	mq/L	08/10/93	JA	EPA 7421	0.001
Magnesium	32	mg/L	08/16/93	MBR	EPA 7450	0.07
Manganese	0.024	mg/L	08/17/93	MBR	EPA 6010	0.001
Sodium	5.8	mg/L	08/16/93	MBR	EPA 7770	0.05
Zinc	0.04	mg/L	08/16/93	JA	EPA 7950	0.01

Sample ID: W-1

Lab ID: 9308031-05 Collected: 08/02/93

				. ,,,,,,,,		001100004.	00/02/33
7	RESULT	UNITS		ANALYZED	BY	METHOD	MDL
Alkalinity (as CaCO3)	142	mg/L		08/09/93	GCB	APHA 2320 B.	2.0
Bicarbonate (as CaCO3)	140	mg/L		08/09/93	GCB	APHA4500-CO2	2.0
Carbonate as CaCO3	2.3	mg/L		08/09/93	GCB	APHA4500-CO2	2.0
Chemical Oxygen Demand	130	mg/L		08/09/93	WS	EPA 410.4	10
Chloride	67.7	mg/L		08/10/93	WS	EPA 300.0	0.1
Sulfate	1.4	mg/L		08/05/93	MBR	EPA 300.0	0.1
Total Organic Carbon	1,9	mg/L		08/05/93	MBR	EPA 9060	1.0
Total Phenols	BDL	mg/L		08/13/93	MBR	EPA 9065	0.005
Acid Digestion, Aqueous	08/05/93	date (digested		MBR	EPA 3010	
Calcium	30	mg/L		08/16/93	MBR	EPA 7140	0.02
Copper	BDL	mg/L		08/13/93	WS	EPA 7210	0.02
Iron	10	mg/L		08/17/93	MBR	EPA 7380	0.03
Lead	BDL	mg/L		08/10/93	JA	EPA 7421	0.001
Magnesium	16	mg/L		08/16/93	MBR	EPA 7450	0.07
Manganese	0.33	mg/L		08/17/93	MBR	EPA 6010	0.001
Sodium	38	mg/L		08/16/93	MBR	EPA 7770	0.05
Zinc	0.05	mg/L		08/16/93	JA	EPA 7950	0.01
Liq/Liq Ext. for Acids	08/05/93	prep.	date		BC	EPA 3510	
MDNR Scan 8 (Phenols)						EPA 8270	
Phenol	BDL	μg/L		08/06/93	LD		1.0
2-chlorophenol	BDL	μg/L		08/06/93	ĽD		1.0
2,4-dichlorophenol	BDL	$\mu g/L$		08/06/93	LD		1.0
2,4,6-trichlorophenol	BDL	μg/L		08/06/93	$\mathtt{L}\mathtt{D}$		1.0
Pentachlorophenol	BDL	μg/L		08/06/93	LD		1.0
4-chloro-3-methylphenol	BDL	μg/L		08/06/93	LD		1.0
2-nitrophenol	BDL	μg/L		08/06/93	LD		1.0
4-nitrophenol	BDL	μg/L		08/06/93	LD		10
2,4-dinitrophenol	BDL	μg/L		08/06/93	LD		10
2-methyl-4,6-dinitrophenol	BDL	μg/L		08/06/93	LD		10
2,4-dimethylphenol	BDL	μg/L		08/06/93	LD		1.0
2,4,5-trichlorophenol MDNR Scans 1&2	BDL	μg/L		08/06/93	LD	EPA 8240	1.0
Bromodichloromethane	BDL	ua /T		08/05/93	HL	LPA 0240	1.0
Bromoform	BDL	μg/L μg/L		08/05/93	HL		1.0
Carbon Tetrachloride	BDL	μg/L μg/L		08/05/93	HL		1.0
Chlorobenzene	BDL	μg/L		08/05/93	HL		1.0
Chlorodibromomethane	BDL	μg/L		08/05/93	HL		1.0
Chloroform	BDL	μg/L		08/05/93	HL		1.0
1,1-dichloroethane	BDL	μg/L		08/05/93	HL		1.0
1,2-dichloroethane	BDL	μg/L		08/05/93	HL	•	1.0
1,1-dichloroethene	BDL	μg/L		08/05/93	HL		1.0
cis-1,2-dichloroethene	BDL	μg/L		08/05/93	HL		1.0
trans-1,2-dichloroethene	BDL	μg/L		08/05/93	HL		1.0
1,2-dichloropropane	BDL	μg/L		08/05/93	HL		1.0
1,3-dichloropropene	BDL	μg/L		08/05/93	HL		1.0
Methylene Chloride	BDL	μg/L		08/05/93	HL		5.0
1,1,2,2-Tetrachloroethane	BDL	μg/L		08/05/93	HL		1.0
Tetrachloroethene	BDL	μg/L		08/05/93	HL		1.0
1,1,1-trichloroethane	BDL	μg/L		08/05/93	HL		1.0
1,1,2-trichloroethane	BDL	μg/L		08/05/93	HL		1.0
Trichloroethene	BDL	μg/L		08/05/93	HL		1.0
Benzene	BDL	μg/L		08/05/93	HL		1.0
Ethyl Benzene	BDL	μg/L		08/05/93	HL		1.0
Toluene	BDL	μg/L		08/05/93	HL		1.0
Styrene	BDL	μg/L		08/05/93	HL		1.0
Xylene Isomers	BDL	μg/L		08/05/93	$^{ m HL}$		1.0

Sample ID: W-2

Lab ID: 9308031-06 Collected: 08/02/93

Sample ID: W-2			Lab ID: 9308031-	06	Collected:	08/02/93
	RESULT	UNITS	ANALYZED	BY	METHOD	MDL
Alkalinity (as CaCO3)	340	mg/L	08/09/93	GCB	АРНА 2320 В.	2.0
Bicarbonate (as CaCO3)	330	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Carbonate as CaCO3	9.8	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Chemical Oxygen Demand	100	mg/L	08/09/93	WS	EPA 410.4	10
Chloride	5.4	mg/L	08/05/93	MBR	EPA 300.0	0.1
Sulfate	0.16	mg/L	08/05/93	MBR	EPA 300.0	0.1
Total Organic Carbon	17	mg/L	08/06/93	MBR	EPA 9060	1.0
Total Phenols	BDL	mg/L	08/13/93	MBR	EPA 9065	0.005
Acid Digestion, Aqueous	08/05/93		digested	MBR	EPA 3010	
Calcium	88	mg/L	08/16/93	MBR	EPA 7140	0.02
Copper	0.03	mg/L	08/13/93	WS	EPA 7210	0.02
Iron	3.3	mg/L	08/17/93	MBR	EPA 7380	0.03
Lead	BDL	mg/L	08/10/93	JA	EPA 7421	0.001
Magnesium	28	mg/L	08/16/93	MBR	EPA 7450	0.07
Manganese	0.24	mg/L	08/17/93	MBR	EPA 6010	0.001
Sodium	6.6	mg/L	08/16/93	MBR	EPA 7770	0.05
Zinc	0.05	mg/L	08/16/93	JA	EPA 7950	0.01
Lig/Lig Ext. for Acids	08/05/93	prep.		BC	EPA 3510	
MDNR Scan 8 (Phenols)	, , , , , , ,	F = -E -			EPA 8270	
Phenol	BDL	μg/L	08/06/93	LD		1.1
2-chlorophenol	BDL	μg/L	08/06/93	LD		1.1
2,4-dichlorophenol	BDL	μg/L	08/06/93	LD		1.1
2,4,6-trichlorophenol	BDL	μg/L	08/06/93	LD		1.1
Pentachlorophenol	BDĻ	μg/L	08/06/93	LD		1.1
4-chloro-3-methylphenol	BDL	μg/L	08/06/93	LD		1.1
2-nitrophenol	BDL	μg/L	08/06/93	LD		1.1
4-nitrophenol	BDL	μg/L	08/06/93	LD		11
2,4-dinitrophenol	BDL	μg/L	08/06/93	LD		11
2-methyl-4,6-dinitrophenol	BDL	μg/L	08/06/93	LD		11
2,4-dimethylphenol	BDL	μg/L	08/06/93	LD		2.0
2,4,5-trichlorophenol	BDL	μg/L	08/06/93	LD	-	1.1
MDNR Scans 1&2		<i>⊢</i> 3/	33, 55, 55		EPA 8240	
Bromodichloromethane	BDL	$\mu g/L$	08/05/93	\mathtt{HL}		1.0
Bromoform	BDL	μg/L	08/05/93	HL		1.0
Carbon Tetrachloride	BDL	μg/L	08/05/93	HL		1.0
Chlorobenzene	BDL	μg/L	08/05/93	HL		1.0
Chlorodibromomethane	BDL	μg/L	08/05/93	HL		1.0
Chloroform	BDL	μg/L	08/05/93	HL		1.0
1,1-dichloroethane	BDL	μg/L	08/05/93	HL		1.0
1,2-dichloroethane	BDL	μg/L	08/05/93	HL		1.0
1,1-dichloroethene	BDL	μg/L	08/05/93	HL		1.0
cis-1,2-dichloroethene	BDL	μg/L	08/05/93	HL		1.0
trans-1,2-dichloroethene	BDL	μg/L	08/05/93	HL		1.0
1,2-dichloropropane	BDL	μg/L	08/05/93	HL		1.0
1,3-dichloropropene	BDL	μg/L	08/05/93	HL		1.0
Methylene Chloride	BDL	μg/L	08/05/93	HL		5.0
1,1,2,2-Tetrachloroethane	BDL	μg/L	08/05/93	HL		1.0
Tetrachloroethene	BDL	μg/L	08/05/93	HL		1.0
1,1,1-trichloroethane	BDL	μg/L	08/05/93	HL		1.0
1,1,2-trichloroethane						1.0
Trichloroethene	BDL	μg/L	08/05/93	HL		
Benzene	BDL	μg/L	08/05/93	HL		1.0
	BDL	μg/L	08/05/93	HL	•	1.0
Ethyl Benzene	BDL	μg/L	08/05/93	$^{ m HL}$		1.0
Toluene	BDL	μg/L	08/05/93	HL	•	1.0 1.0
Styrene Xylene Isomers	BDL BDL	μg/L	08/05/93	HL HL		1.0
valence racinera	י	μg/L	08/05/93	пL		∡.∪

⁼ Below Detection Limit

⁼ Method Detection Limit

Sample ID: W-4

	<u> </u>	· · · · · · · · · · · · · · · · · · ·				, 35,
T	RESULT	UNITS	ANALYZED	вч	METHOD	MDL
Alkalinity (as CaCO3)	132	mg/L	08/09/93	GCB	АРНА 2320 В.	2.0
Bicarbonate (as CaCO3)	130	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Carbonate as CaCO3	2.3	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Chemical Oxygen Demand	20	mg/L	08/09/93	WS	EPA 410.4	10
Chloride	0.46	mg/L	08/05/93	MBR	EPA 300.0	0.1
Sulfate	0.14	mg/L	08/05/93	MBR	EPA 300.0	0.1
Total Organic Carbon	12	mg/L	08/06/93	MBR	EPA 9060	1.0
Total Phenols	BDL	mg/L	08/13/93	MBR	EPA 9065	0.005
Acid Digestion, Aqueous	08/05/93		digested	MBR	EPA 3010	0.005
Calcium	30	mg/L	08/16/93	MBR	EPA 7140	0.02
Copper	BDL	mg/L	08/13/93	WS	EPA 7210	0.02
Iron	3.0	mg/L	08/17/93	MBR	EPA 7380	0.03
Lead	BDL	mg/L	08/10/93	JA	EPA 7421	0.001
Magnesium	11	mg/L	08/16/93	MBR	EPA 7450	0.07
Manganese	0.14		08/17/93	MBR	EPA 6010	0.001
Sodium	2.4	mg/L mg/L	08/16/93	MBR	EPA 7770	0.05
Zinc	0.05		08/16/93	JA	EPA 7950	0.01
	08/05/93	mg/L		BC	EPA 3510	0.01
Liq/Liq Ext. for Acids MDNR Scan 8 (Phenols)	00/05/53	prep.	date	ьс	EPA 8270	
Phenol	DDT	/T	08/06/93	LD	EFR 02/0	1.1
	BDL	μg/L				1.1
2-chlorophenol	BDL	μg/L	08/06/93	LD		
2,4-dichlorophenol	BDL	μg/L	08/06/93	LD		1.1
2,4,6-trichlorophenol	BDL	μg/L	08/06/93	LD		1.1
Pentachlorophenol	BDL	μg/L	08/06/93	ΓD		1.1
4-chloro-3-methylphenol	BDL	μg/L	08/06/93	LD		1.1
2-nitrophenol	BDL	μg/L	08/06/93	LD		1.1
4-nitrophenol	BDL	μg/L	08/06/93	LD		11
2,4-dinitrophenol	BDL	μg/L	08/06/93	LD		11
2-methyl-4,6-dinitrophenol	BDL	μg/Ľ	08/06/93	LD		11
2,4-dimethylphenol	BDL	μg/L	08/06/93	LD		1.1
2,4,5-trichlorophenol	BDL	μ g/L	08/06/93	LD	0040	1.1
MDNR Scans 1&2			00/05/00		EPA 8240	
Bromodichloromethane	BDL	μg/L	08/05/93	$^{ m HL}$		1.0
Bromoform	BDL	μg/L	08/05/93	$^{ m HL}$		1.0
Carbon Tetrachloride	BDL	μg/L	08/05/93	HL		1.0
Chlorobenzene	BDL	μg/L	08/05/93	$^{ m HL}$		1.0
Chlorodibromomethane	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
Chloroform	BDL	μ g/L	08/05/93	\mathtt{HL}		1.0
1,1-dichloroethane	\mathtt{BDL}	μ g/L	08/05/93	\mathtt{HL}		1.0
1,2-dichloroethane	BDL	μg/L	08/05/93	$^{ m HL}$		1.0
1,1-dichloroethene	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
cis-1,2-dichloroethene	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
trans-1,2-dichloroethene	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
1,2-dichloropropane	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
1,3-dichloropropene	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
Methylene Chloride	BDL	μg/L	08/05/93	\mathtt{HL}		5.0
1,1,2,2-Tetrachloroethane	BDL	μg/L	08/05/93	$^{ m HL}$		1.0
Tetrachloroethene	BDL	μg/L	08/05/93	$_{ m HL}$		1.0
1,1,1-trichloroethane	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
1,1,2-trichloroethane	BDL	μg/L	08/05/93	HL		1.0
Trichloroethene	BDL	μg/L	08/05/93	HĻ		1.0
Benzene	BDL	μg/L	08/05/93	HL		1.0
Ethyl Benzene	BDL	μg/L	08/05/93	HL		1.0
Toluene	BDL	μg/L	08/05/93	HL		1.0
Styrene	BDL	μg/L	08/05/93	HL		1.0
Xylene Isomers	BDL	μg/L		HL		1.0
ing remarkable	2011	ם/פית	00/00/00			1.0

Sample ID: W-7

Lab ID: 9308031-08

Alkalinity (as CacO3)	Sample ID: W-7			Lab ID:	9308031-	08	Collected:	08/02/93
Bicarbonate (as CaCO3)		RESULT	UNITS		ANALYZED	ву	METHOD	MDL
Carbonate as CaCO3			mg/L			GCB		2.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								2.0
Chloride								2.0
Sulfate					*. *.			10
Total Phenols								0.1
Total Phenois								
Acid Digestion, Aqueous 08/05/93 date digested Calcium MBR EPA 3010 Calcium 150 mg/L 08/16/93 MBR EPA 7140 0.02 Copper BDL mg/L 08/13/93 WS EPA 7210 0.02 Iron 20 mg/L 08/11/93 MBR EPA 7210 0.02 Magnanes 21 mg/L 08/11/93 MBR EPA 7450 0.00 Manganese 2.4 mg/L 08/16/93 MBR EPA 6010 0.00 Sodium 29 mg/L 08/16/93 MBR EPA 6010 0.00 Sodium 29 mg/L 08/16/93 MBR EPA 7700 0.01 Liq/Liq Ext. for Acids 08/05/93 prep. date BC EPA 3510 EPA								1.0
Calcium					08/13/93			0.005
Copper				digested	/ /			
Tron								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Manganese 2.4 mg/L 08/16/93 MBR EPA 7450 0.00								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Sodium	2							
Zinc	. T							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					08/16/93			0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		08/05/93	prep.	date		BC		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		BDL				LD		1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		BDL	μg/L		08/06/93	$_{ m LD}$		1.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathtt{BDL}			08/06/93	LD		1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		BDL	μg/L		08/06/93	LD		1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		BDL	μg/L		08/06/93	LD		1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4-chloro-3-methylphenol	BDL			08/06/93	LD		1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-nitrophenol	BDL	μg/L		08/06/93	LD		1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4-nitrophenol	BDL	μg/L		08/06/93	LD		11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,4-dinitrophenol	BDL			08/06/93	LD		11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		BDL			08/06/93	LD		11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,4-dimethylphenol	\mathtt{BDL}	μg/L			LD		1.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,4,5-trichlorophenol	\mathtt{BDL}	μg/L		08/06/93	LD		1.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MDNR Scans 1&2		,				EPA 8240	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromodichloromethane	\mathtt{BDL}	$\mu { m g}/{ m L}$		08/05/93	\mathtt{HL}		1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		BDL	μg/L		08/05/93	\mathtt{HL}	•	1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Carbon Tetrachloride	BDL	$\mu { m g/L}$		08/05/93	\mathtt{HL}		1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chlorobenzene	BDL	μg/L		08/05/93	\mathtt{HL}		1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Chlorodibromomethane	BDL	μg/L		08/05/93	\mathtt{HL}		1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Chloroform	BDL				\mathtt{HL}		1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		BDL	μg/L			\mathtt{HL}		1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2-dichloroethane	BDL	μg/L		08/05/93	\mathtt{HL}		1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1-dichloroethene	BDL	μg/L		08/05/93	${ t HL}$		1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-1,2-dichloroethene	BDL	μg/L		08/05/93	$^{ m HL}$		1.0
1,3-dichloropropene BDL μ g/L 08/05/93 HL 1. Methylene Chloride BDL μ g/L 08/05/93 HL 5. 1,1,2,2-Tetrachloroethane BDL μ g/L 08/05/93 HL 1. Tetrachloroethene BDL μ g/L 08/05/93 HL 1.	trans-1,2-dichloroethene	BDL	μg/L		08/05/93	\mathtt{HL}		1.0
Methylene Chloride BDL μ g/L 08/05/93 HL 5. 1,1,2,2-Tetrachloroethane BDL μ g/L 08/05/93 HL 1. Tetrachloroethene BDL μ g/L 08/05/93 HL 1.	1,2-dichloropropane	BDL	μ g/L		08/05/93	\mathtt{HL}		1.0
1,1,2,2-Tetrachloroethane BDL μ g/L 08/05/93 HL 1. Tetrachloroethene BDL μ g/L 08/05/93 HL 1.	1,3-dichloropropene	BDL	μg/L		08/05/93	$_{ m HL}$		1.0
1,1,2,2-Tetrachloroethane BDL μ g/L 08/05/93 HL 1. Tetrachloroethene BDL μ g/L 08/05/93 HL 1.	Methylene Chloride	BDL						5.0
Tetrachloroethene BDL μ g/L 08/05/93 HL 1.	1,1,2,2-Tetrachloroethane	BDL						1.0
		BDL				\mathtt{HL}		1.0
, , :=:::=:=:=:=:=:====================	1,1,1-trichloroethane	BDL	μg/L		08/05/93	\mathtt{HL}		1.0
								1.0
	Trichloroethene	\mathtt{BDL}						1.0
		BDL						1.0
	Ethyl Benzene							1.0
	Toluene	BDL						1.0
	Styrene	BDL				HL		1.0
Xylene Isomers BDL μ g/L 08/05/93 HL 1.	Xylene Isomers	BDL	μg/L	ı	08/05/93	\mathtt{HL}		1.0

BDL = Below Detection Limit

MDL = Method Detection Limit

Sample ID: W-8

Jampie ID. W-0			Den The Dancor	<i>-</i>	COTTECCEG.	00,02/33
	RESULT	UNITS	ANALYZED	ВҰ	METHOD	MDL
Alkalinity (as CaCO3)	224	mg/L	08/09/93	GCB	АРНА 2320 В.	2.0
Bicarbonate (as CaCO3)	220	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Carbonate as CaCO3	4.1	mg/L	08/09/93	GCB	APHA4500-CO2	2.0
Chemical Oxygen Demand	140	mg/L	08/09/93	WS	EPA 410.4	10
Chloride	12.1	mg/L	08/10/93	WS	EPA 300.0	0.1
Sulfate	0.50	mg/L	08/05/93	MBR	EPA 300.0	0.1
Total Organic Carbon	35	mg/L	08/06/93	MBR	EPA 9060	1.0
Total Phenols	BDL	mg/L	08/13/93	MBR	EPA 9065	0.005
Acid Digestion, Aqueous	08/05/93		digested	MBR	EPA 3010	
Calcium	52	mg/L	08/16/93	MBR	EPA 7140	0.02
Copper	BDL	mg/L	08/13/93	WS	EPA 7210	0.02
Iron	20	mg/L	08/17/93	MBR	EPA 7380	0.03
Lead	BDL	mg/L	08/10/93	JA	EPA 7421	0.001
Magnesium	21	mg/L	08/16/93	MBR	EPA 7450	0.07
Manganese	0.40	mg/L	08/17/93	MBR	EPA 6010	0.001
Sodium	10	mg/L	08/16/93	MBR	EPA 7770	0.05
Zinc	0.05	mg/L	08/16/93	JA	EPA 7950	0.01
Lig/Lig Ext. for Acids	08/05/93		date	BC	EPA 3510	3732
MDNR Scan 8 (Phenols)	00,00,50	ргорч	4400		EPA 8270	
Phenol	BDL	μg/L	08/06/93	LD	2111 02.0	1.1
2-chlorophenol	BDL	μg/L	08/06/93	LD		1.1
2,4-dichlorophenol	BDL	μg/L	08/06/93	LD		1.1
2,4,6-trichlorophenol	BDL	μg/L	08/06/93	LD		1.1
Pentachlorophenol	BDL	μg/L	08/06/93	LD	•	1.1
4-chloro-3-methylphenol	BDL	μg/L	08/06/93	LD		1.1
2-nitrophenol	BDL	μg/L	08/06/93	LD		1.1
4-nitrophenol	BDL	μg/L μg/L	08/06/93	LD		11
2,4-dinitrophenol	BDL	μg/L	08/06/93	LD		11
2-methyl-4,6-dinitrophenol	BDL	μg/L	08/06/93	LD		11
2,4-dimethylphenol	BDL	μg/L	08/06/93	LD		1.1
2,4,5-trichlorophenol	BDL	μg/L	08/06/93	LD		1.1
MDNR Scans 1&2	202	F9/1	00,00,30	55 ,	EPA 8240	***
Bromodichloromethane	BDL	$\mu g/L$	08/05/93	\mathtt{HL}	2111 02 10	1.0
Bromoform	BDL	μg/L	08/05/93	$^{ m HL}$		1.0
Carbon Tetrachloride	BDL	μg/L	08/05/93	HL		1.0
Chlorobenzene	BDL	μg/L	08/05/93	HL		1.0
Chlorodibromomethane	BDL	μg/L	08/05/93	HL		1.0
Chloroform	BDL	μg/L	08/05/93	HL		1.0
1,1-dichloroethane	BDL	μg/L	08/05/93	HL		1.0
1,2-dichloroethane	BDL	μg/L	08/05/93	HL		1.0
1,1-dichloroethene	BDL	μg/L	08/05/93	HL		1.0
cis-1,2-dichloroethene	BDL	μg/L	08/05/93	HL		1.0
trans-1,2-dichloroethene	BDL	μg/L	08/05/93	HL		1.0
1,2-dichloropropane	BDL	μg/L	08/05/93	HL		1.0
1,3-dichloropropene	BDL		08/05/93	HL		1.0
Methylene Chloride	BDL	μg/L	08/05/93	HL		5.0
1,1,2,2-Tetrachloroethane	BDL	μg/L	08/05/93	HL		1.0
Tetrachloroethene	BDL	μg/L				
1,1,1-trichloroethane	BDL	μg/L	08/05/93	HL		1.0 1.0
1,1,2-trichloroethane		μg/L	08/05/93	HL		
Trichloroethene	BDL	μg/L	08/05/93	HL		1.0
	BDL	μg/L	08/05/93	HL		1.0
Benzene	BDL	μg/L	08/05/93	HL		1.0
Ethyl Benzene	BDL	μg/L	08/05/93	HL		1.0
Toluene	BDL	μg/L	08/05/93	HL		1.0
Styrene	BDL	μg/L	08/05/93	HL		1.0
Xylene Isomers	BDL	μg/L	08/05/93	HL		1.0

Sample ID: Trip Blank

Lab ID: 9308031-10 Collected: 06/30/93

	RESULT	UNITS	ANALYZED	BY	METHOD	MDL
MDNR Scans 1&2				ALCONO	EPA 8240	- 11110-200-1
Bromodichloromethane	\mathtt{BDL}	μg/L	08/05/93	\mathtt{HL}		1.0
Bromoform	\mathtt{BDL}	$\mu { t g}/{ t L}$	08/05/93	\mathtt{HL}		1.0
Carbon Tetrachloride	BDL	μg/L	08/05/93	HL		1.0
Chlorobenzene	\mathtt{BDL}	μg/L	08/05/93	\mathtt{HL}		1.0
Chlorodibromomethane	\mathtt{BDL}	μg/L	08/05/93	\mathtt{HL}		1.0
Chloroform	\mathtt{BDL}	μg/L	08/05/93	$^{ m HL}$		1.0
1,1-dichloroethane	\mathtt{BDL}	μg/L	08/05/93	\mathtt{HL}		1.0
1,2-dichloroethane	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
1,1-dichloroethene	\mathtt{BDL}	μg/L	08/05/93	\mathtt{HL}		1.0
cis-1,2-dichloroethene	BDL	μg/L	08/05/93	$^{\rm HL}$		1.0
trans-1,2-dichloroethene	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
1,2-dichloropropane	BDL	μg/L	08/05/93	HL		1.0
1,3-dichloropropene	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
Methylene Chloride	BDL	μg/L	08/05/93	\mathtt{HL}		5.0
1,1,2,2-Tetrachloroethane	BDL	μg/L	08/05/93	\mathtt{HL}	•	1.0
Tetrachloroethene	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
1,1,1-trichloroethane	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
1,1,2-trichloroethane	BDL	μg/L	08/05/93	$^{ m HL}$		1.0
Trichloroethene	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
Benzene	BDL	μg/L	08/05/93	$_{ m HL}$		1.0
Ethyl Benzene	BDL	μg/L	08/05/93	${\tt HL}$		1.0
Toluene	BDL	μg/L	08/05/93	\mathtt{HL}		1.0
Styrene	BDL	μg/L	08/05/93	$^{ m HL}$		1.0
Xylene Isomers	BDL	μg/L	08/05/93	$_{ m HL}$		1.0

CLIENT SAMPLE -- CHAIN OF CUSTODY FORM

Project Name:	MAMISTIC	7/7/ / 24%	Eet	INC.					
Name of Sampler:	LARFI	40UGH		Mita	STANNARD	-	BITTNER	ENGR.	Iv

ESI#	Ŋ	,	Sample	Sample	No.	Analyses
9308031	Date	Time	Matrix	Cample ID	Cont.	
	<u> </u>				-	
(8-2-93	1000	SW	19-1		ON ALL STATIONS AS Listed;
- 2		1100	SW	<u>R-2</u> :	5	Acalinity Bicarparate Corporate
- 3		1130	SW	18-3	5	Chloride Sulphate, copper Iru
-4		1030	5W	G-1	<u>_</u> 5	Lead Mannesium, Manganese
-5	}	1400	GW	111-1	5	Sadium Zinc Coloium (COD
-6		0900	GW	W-2	5	Phonols TOC.
-7		1330		W-4	5	
-8		0930		W-7	5	
-9	8-z-93		····	W-8	5	
_5	8-Z-93	1400	GW	W-/	5	MDNR Scan 1,2,8
-6	1	6900		W-2	5	do
-7		1320		W-4	5-	10
-8		0930		W-7	5	do
-9	8-2-93			W-8	3	do
	SAM	OLES	SHIPPE	D IN 3 coole	rs.	·
				W-8 D /N 3 coole		do

Remarks: Note: Please Bill Manistroue PAPERS INC. DRECTLY - SEND RESULTS TO BITTNER ENGINEERING INC. 113 SO. 10th STREET ESCANABA, MI 49829

Samples Belinquished By:	Samples Transported By:	: Samples Regeived By:
Fornttourh	U.P.S.	P.J. Colchen
Affiliation:	Affiliation:	Affiliation:
Hydro. Tech		V Wmesi
Date: // Time:	Date: Time:	Date: Time:
8-3-93 1400		8/4/93 1000

S' 'PLE MATRIX CODES:

W = Water

GW = Groundwater

SW = Surface Water

WW = Wastewater

WST = Waste

S = Soil

O = Other

LABORATORY -- SAMPLE RECEIVING RECORD

CLIENT: B; Her	Eng - Monis frage	PergerESI#:	9308031	
RECEIVED BY:	PJC	DATE:	8/4/93	

SAMPLE	# OF	BOTILE	SAMPLE		MPLE		ANALYSES	DATE
#	BOTTLES	DESC	MATRIX	IDENTI	FICATION]	REQUESTED	SAMPLED
-1/-4	1 (0)	LABFA	5 W	-1	R-1			8/2
	1 1	UBFD		-2	R.Z	See	chest 1-0-c	
	l	LPBFA		-3	R-3			
		SPBFA		<u>-4</u>	6-1	/		
	1 4	16BFA						
-5/-9	Some a	-1 0	5 6W	-5	W-1			
	20	L 6BFD		-6	ω-2,	1 Sce	Client c-o-c	8/2
	3 ↓	VONA		-7	w-4			
		-		-8	w - 7			
			J	-9	ω -3	/		
-10	2	VONA	ω	trip b	slonk	DNRIZ		6/30
				(
			i					

Condition of Icepacks:	Fully Frozen	Partially Frozen	Thawed	NA
Comments:		1136	01,1019341,	1030607

Sample Matrices	Bottle Sizes	Bottle Types	Bottle Fullness	Preservation
W = Water	L = Liter	P = Plastic	N = No Head Room	A = pH < 2
WW = Wastewater	5 = 500 ml	A = Amber Glass	F = Full	B = pH > 12
GW = Groundwater	2 = 250 ml	G = Clear Glass	P = Partial	C = Na2S2O3
SW = Surfacewater	1 = 125 ml	B = Bottle		D = None
S = Soil	6 = 60 ml	W = Wide-Mouth Jar		
SL = Sludge	V = 44 ml	M = Medium-Mouth Jar		
WT = Waste		S = Small-Mouth Jar		
Oil		C = Colilert		
Blank		O = VOA Vial		
		T = Tall		1
		P = Short		

MICHIG. DEPARTMENT OF NATURAL R. SURCES

INTEROFFICE COMMUNICATION

April 24, 1993

TO:

Robert Schmeling II, Regional Supervisor, Waste

Management Division

FROM:

Duane Roskoskey, Waste Characterization Unit,

Waste Management Division

SUBJECT: Manistique Papers Waste Characterization

Staff have completed their review of analytical data submitted to our office by Dennis Bittner, Bittner Engineering, Inc., for the coal ashes and paper mill sludge generated at Manistique Papers, Inc (copy attached). We are unable to characterize either waste stream as inert (uncontaminated) pursuant to the Solid Waste Management Act, 1978 P.A. 641, as amended, based on the results of the analytical testing. A number of parameters are elevated above the Type B criteria developed pursuant to the Michigan Environmental Response Act, 1982 P.A. 307, as amended, which we have adopted as our guidelines for designating a material as inert. Following is a list of the 95% Upper Confidence Levels' (UCL 95), which are based on the number of samples and the variation of the sample results, of the parameters that exceed the Type B criteria (results are leachable concentrations of contaminants using Synthetic Precipitation Leach Procedure [SPLP]):

	•		
Waste Stream	<u>Parameter</u>	<u>Results</u>	Type B Criteria
Coal Ashes	Aluminum	1400 ug/l	50 ug/l
	Arsenic	46.2 ug/l	1.0 ug/l
	Arsenic*	10.7 mg/kg	5.8 mg/kg
	Iron	312 ug/l	300 ug/l
Sludge	Aluminum	564 ug/l	50 ug/l
	Arsenic	1.3 ug/l	1.0 ug/l
	Manganese	120 ug/l	50 ug/l

^{*} total concentration of arsenic

Based on the results of the analytical data, both waste streams could be disposed in a licensed Type II landfill or an upgraded Type III facility that contains a liner and leachate collection system. Any groundwater monitoring protocol at the current disposal site should include volatile organic compounds and phenolics (both were present below the Type B criteria) in addition to those listed above. If you have any questions concerning the above results or recommendations, I can be reached at 517-335-4712.

Attachment

cc: Jack Rydquist, SWQD, Marquette
 Frank Baldwin, SWQD
 Joan Peck, WMD
 John Craig, WMD

NATURAL RESCURCES COMMISSION
THOMAS J. ANDERSON
MARLENE J. FLUHARTY
CORDON E. GUYER
'Y KAMMER
DOD A. MATTSON
.EWART MYERS
BATMOND POUPORE

JAMES J. BLANCHARD, Governor

DEPARTMENT OF NATURAL RESOURCES

STEVENS T. MASON BUILDING P.O. BOX 30028 LANSING, MI 48909

DAVID F. HALES, Director

November 28, 1989

RECEIVED

Mr. Dennis B. Bittner, P.E. Bittner Engineering, Inc. 614 Ludington Street Escanaba, MI 49829

DEC -1 1989

Marquette Dist. W.M.D.

Dear Mr. Bittner:

I have recently completed by review of the May 3, 1989 proposal that your firm submitted for a waste characterization study for Manistique Papers.

The study should be completed with the following modifications:

- All materials, including the miscellaneous wood and paper wastes, must be representatively sampled and analyzed for waste characterization.
- 2. In order to representatively sample a variable waste stream, a minimum of four discrete samples must be analyzed. A composite of five daily samples (as proposed) will represent one sample. This practice should be performed a minimum of four times providing at least four discrete samples per waste.
- Testing need not include ASTM leachate analysis. Please see comments 4 and 5 for specific requirements. Any additional organics that could be present in the waste must be analyzed by TCLP methodology.
- 4. The <u>dewatered sludge</u> must be analyzed for the following parameters (note detection limits):

-TCLP extraction of the waste followed by analysis using EPA Methods 601/602.

Mr. Dennis B. Bittner Page 2 November 28, 1989

-TCLP or EP toxic extraction of the waste followed by analysis for the following metals:

	Detection		Detection
Parameter	Limit (mg/l)	Parameter	Limit (mg/l)
Aluminum	0.05	Lead	0.001
Arsenic	0.005	Mercury	0.0004
Barium	0.200	Nickel	0.028
Cadmium	0.002	Selenium	0.002
Chromium	0.01	Silver	0.01
Copper	0.2	Zinc	0.3
Iron	0.300	Manganese	0.05

- -Total (compositional) analysis for PCB's, sulfides, TOC, 601/602 volatiles and the above listed metals.
- -TCLP extraction followed by analysis for total phenols and pH.
- 5. The <u>fly ash</u> and <u>bottom ash</u> must be analyzed for the following parameters:
 - -TCLP extraction of the waste followed by analysis using EPA methods 601/602.
 - -TCLP or EP toxic extraction of the waste followed by analysis for the following metals:

	Detection		Detection
Parameter	Limit (mg/l)	Parameter	Limit (mg/l)
Arsenic	0.005	Lead	0.001
Barium	0.200	Mercury	0.0004
Cadmium	0.002	Selenium	0.002
Chromium	0.01	Silver	0.01
Copper	0.2	Zinc	0.3

- -Total (compositional) analysis for 601/602 volatiles and the above listed metals.
- -TCLP or EP toxic extraction of the waste followed by analysis for:
- -- gross alpha particle activity
- -- radium-226 if gross alpha analysis is greater than 5 pci/liter
- -- radium-228 if radium-226 analysis is greater than 3 pci/liter

Mr. Dennis B. Bittner Page 3 November 28, 1989

- 6. The final report must describe the following:
 - containers and preservatives used during sampling
 - sampling devices and methods used to collect the samples
 - handling and chain-of-custody procedures for the samples
 - recordkeeping procedures to show the sampling program is followed
 - a list of persons performing the sampling and analysis
- 7. If it is felt that certain analyses are not necessary to adequately characterize a specific waste stream, justification must be submitted with the final report.

If you have any further questions, please contact me at 517-373-7895.

Sincerely.

Kimberly Paksi

Waste Characterization Unit

Waste Management Division

cc: Rob Schmeling

Manistique Paper File

Cust.	No:	151
Cust.	IVO.	

CORY LABORATORIES, INC. 823 5th St. MENOMINEE, MICH.

DO	No:		
r.U.	IVO:		

SAMPLE ANALYSIS SUMMARY

SAMPLE DESCRIPTION:

151-24-923: Swamp Sample #1, T. 9-23-79-Besa of Pile (west)

151-25-923: Swamp Sample #2, T. 9-23-79-400' West of P./e 151-26-923: Swamp Sample #3, T. 9-23-79-1m./. North of Pile.

151-27-923: Sludge Cake, Sample #4, T. 9-23-79-

151-006-923: 006 Grab, Sample #5, T. 9-23-79 - out fall To River

TEST RUN	24-923	25-923	26-923	27-923 *	006-923
Antimony, mg/l	20.5	<0.5	< 0.5	<20	0.7
Inorganic Arsenic, mg/l	< 0.007	< 0.007	<0.007	0.65	<0.007
Beryllium, mg/l	< 0.05	< 0.05	< 0.05	1.9.	<0.05
Cadmium, mg/l	0.042	0.088	0.023	3.2	0.054
Cobalt, mg/l	0.20	0.34	0.13	<2.2	0.10
(opper, mg/l -	< 0.030	<0.030	<0.030	110 :	< 0.030
Lead, mg/l	0.082	0.032	<0.020	98 ~	0.027
Manganese, mg/l	3.0	4.5	0-11	15	0.49
Mercury, mg/1	< 0.0005	< 0.0005	<0.0005	<0.03	<0.0005
Molybdenum, mg/l	<0.2	<0.2	<0.2	11	<0.2
Nickel, mg/1 -	0.23	0.25	0.22	29 -	0.32 -
Selenium, mg/l	0.014	10.005	< 0.005	13	10.005
Silver, mg/l	20.020	<0.020	<0.020	<1.5	<0.020
Thallium, mg/l	<0.3	<0.4	< 0.4	<20	<0.4
Zinc, mg/1	3.2	<0.030	< 0.030	81 -	0.22 4

COMMENTS:

DATE:

* Results reported as ppm dry basis. Sample Received: 9-26-79

ANALYST:

NOV 15 1979

|--|

Cust.	No.	151
Lusi.	IMO:	

CORY LABORATORIES, INC. 823 5th St. MENOMINEE, MICH. .

P.O.	No:			

SAMPLE ANALYSIS SUMMARY

151-24-923: Swamp Sample #1, T. 9-23-79-Bese of P. /e (west) 151-25-923: Swamp Sample #2, T. 9-23-79-400' west of Pile

151-26-923: Swamp Sample #3, T. 9-23-79-1-1/e North of Pile

151-27-923: Sludge Cake, Sample #4, T. 9-23-79

151-006-923: 006 Grab, Sample #5, T. 9-23-79-00r soff-11 To river

RECEIVE

NOV191379 =

TEST RUN	24-923	25-923	26-923	27-923	006-923
crylonitrile, mg/l	< 0.5	< 0.5	<0.5	< 2.0 *	<0.5
otal Solids, %				24.6	
:			·		
				,	
·					
	· · · · · · · · · · · · · · · · · · ·			-	
	1	· · · · · · · · · · · · · · · · · · ·	-		

COMMENT	_
	· ·

9-26-79 Sample Received: _

* Results reported as ppm dry basis

NOV 1 5 1979 DATE: .

ANALYST:

Cust	No-	151
~~~~~	w.	

# CORY LABORATORIES, INC. 823 5th St. MENOMINEE, MICH.

P.O.	No.	
	* a C.	4

# SAMPLE ANALYSIS SUMMARY

	SAMPL	E	DESCRIPTION:
--	-------	---	--------------

151-28-1014: Sample # 6, Taken 10-14-79 Ground Sample west Boundry Line 200' North of Fruiklasich Road

		X (;
TEST RUN	28-1014 *	
Antimony, ppm	<0.7	
Inroganic Arsenic, ppm	0.038	
Beryllium, ppm	< 0.07	
Cadmium, ppm	<0.07	
Cobalt, ppm	0.38	
Copper, ppm .	1.9	
Lead, ppm	0.56	
Manganese, ppm	5.8	
Mercury, ppm	0.020	
Molybdenum, ppm	< 0.7	
Nickel, ppm	0.45	
Selenium, ppm	0.17	
Silver, ppm	<0.15	
Zinc, ppm	1.0	
Thallium, ppm	< 2.0	

COMMENTS:

* Results reported as ppm dry basis. Sample Received:

DATE: NOV 1 8 1979

,		
		₹.;

C	Alme	151
Cust.	V13°	

## CORY LABORATORIES, INC. 823 5th St. MENOMINEE, MICH.

### SAMPLE ANALYSIS SUMMARY

A	-	~ ~ ~ ~ ~ · ~ ~ · ·
SAMPL	-	DESCRIPTION:

151-28-1014: Sample #6 Taken 10-14-79 Ground Enmple west Bounday Line 200' North of Frankovich Road

				<i></i>
TEST RUN	28-1014			
Acrylonitrile, ppm 💝	< 0.65	No. of the last of		
Total Solids %	75.6			
	·		and the second	
		- Constitution		 
			100000000000000000000000000000000000000	
· · · · · · · · · · · · · · · · · · ·				
,				 

CO	M	Νi	FN	TS.

Sample Received: -

* Results reported as ppm dry basis.

MOV 1 8 1979 DATE: _

ANALYST: 2

# CORY LABORATORIES, INC.

823 5TH STREET & MENOMINEE, MICHIGAN 49858 & (006) 863-9336

Marking Comments to Markington SM 475.44

LANDFILL SLUDGE REPORT

MANISTIQUE PULP & PAPER CO.

SUBMITTED BY:

CORY LABORATORIES INC Menominee, MI 49858 Jan 15,1979

### LANDFILL SLUDGE REPORT

This report summarizes analytical data concerning the content and leachability of typical sludge from the Manistique Pulp and Paper Co. which is disposed of to a landfill site.

The purpose of the report is to present the analytical data and conclusions relative to the chemical content of the sludge and compounds/elements that can leach from the material.

### DESCRIPTION AND GENERAL PHYSICAL PARAMETER

The sludge is a grey color with a mild musty type odor. The general physical parameters are by analysis.

- (1) Water 75%
- (2) Clays, soils and other noncombustibles 16%
- (3) Paper fibers 9%
- (4) pH 5.1 5.9

### PROCEDURE

On two occassions, once in March 1977 and again in June 1977, samples of typical sludge for disposal were submitted for analysis. They were identified as follows.

151-28-327 Mill Sludge March 77 151-29-609 Mill Sludge June 77

Each sample was analyzed in accordance with methods prescribed in Table I,
List of Approved Test Procedures, 40 CFR Part 136, Analysis of Pollutants,
June 9, 1975 and the data results summarized in Table I. In some cases,
parameters in the second sample were not run since it was not deemed necessary
to repeat the analysis.

Of the tested parameters, the following were in excess of 200 ppm and of a relatively non-toxic nature.

	value in pom
Kjeldahl N	640-690
Silicon	16,400 ppm
Phosphorus	250-260
Aluminum	25,200-31,200
Titanium	2,500

Of the parameters analyzed, the following are values of the more toxic materials that were deemed present in sufficient quantity to be set-out separately:

•		Value in ppm
Chromium,	Total	21
Nickel		4
Copper		30
Lead	-	39
Zinc		20

Sample 151-29-609 was subjected to leaching studies and the results shown in Table 2. Examination of the leaching data indicates that the material has no tendency to leach any parameter tested to a degree that would cause concern. We attribute this to low soluability and the chelating characteristics associated with clays. Clays are an expected content of this sludge.

The results shown here were examined against typical paper mill sludges and no abnormalities were noted.

The procedure for the leaching study is shown in the appendix.

### CONCLUSION:

The material for disposal does not appear to be a hazzard or concern to cause a deterioration of groundwater and it's physical characteristics do not appear to be a social-esthetic problem from the odor point of view, transportation, etc. Final covering with earth would seem in order due to color.

TABLE 1

# DATA RELATED DETERMINATION OF SLUDGE CONTENT

# (All Values PPM Unless Otherwise Noted)

PARAMETER	(151-28-327) MILL SLUDGE	(151-29-609) MILL SLUDGE	(151-38-1002) SITE FILL
Kjeldahl Nit.	690	640	p== 400 000
Potassium	170	240	170
Silicon	16,400	<b>⇔</b> ≈ ∞	em an 400
Phosphorus	260	250°	127
Benzine/	1.0		150 als 165
Ash	10.9	<u> </u>	16%
Ash (dry basis)		ea on es	55%
Moisture %	76.6	73.8	p- — e5
T. Vol. Solids %	53.4	52.0	
Toluene	1.0	<2	
Manganese	2.7	6.5	< 0.030
Molybdenum	19		4.0
Vanadium	co- es ap	11	
Iron	590	68	
Tungston	95		
Columbium	72		v= ×∞ •==
Cobalt	1.6	2.6	<b>√0.5</b>
Aluminum	25,200	31,200	31,000
Magnesium	15	39	110
Titanium	2,500	-2 <del></del>	,
Bismuth	14		
Boron	. 0.36	0.65	
Calcium	<b>&lt;1</b>	1.9	
Zirconium	190	<u>-</u> - • ••	
Chloride	11	13	m m
Antimony	∠10	<u>-</u>	=a ao go
Chromium /	21	26	110
Nickel	4	15	<0.05
Copper	30	25	4.8
Tin	34		< 20 ⋅
Lead	39	95	116
Arsenic 🗸	0.17	0.12	0.28
Zinc	20	38	1.4
Barium	14	<b></b>	
Mercury			<0.001
рн			5.4
Total Solids	000 PD PD		29%
Ash (as received)	en en en	<b>=&gt; 400 ₹</b> 00	16%
Ash (dry basis)			55%

Methods of Analysis in Accordance with Table I, List of Approved Test Procedures, 40 CFR, Part 136, Analysis of Pollutants, June 9, 1975.

DATA RELATED TO MATERIAL THAT CAN LEACH FROM SLUDGE

TABLE 2

# (All Values In mg/l Unless Otherwise Indicated)

PARAMETER	(151-129A-1002) FIRST LEACHATE	(151-129B-1002) SECOND LEACHATE	(151-129C-1002) THIRD LEACHATE		
Total Chrome	<0.025	<0.025	< 0.025		
pH, units	4.0	5.9	5.6		
Aluminum	0.57	< 0.01	<0.01		
Copper	0.043	< 0.030	<0.030		
Nickel	0.21	<0.05	< 0.05		
Lead	<0.020	< 0.020	< 0.020		
Mercury	<0.002	<0.002	< 0.002		
Phosphorus	0.87	0.96	0.39		
Zinc	0.089	0.053	0.038		
Kjeldahl Nit.	5.3	0.69	1.1		
Potassium	3.8	0.54	0.33		
Silicon	17	1.4	2.0		
Manganes <b>e</b>	0.76	0.031	0.047		
Molybđenum	<0.2	< 0.2	<0.2		
Vanadium	<0.1	<0.1	< 0.1		
Iron	17	0.94	0.58		
Tungston	7	< 4	< 4		
Columbium	6	2	< 2		
Cobalt	< 0.030	< 0.030	40.030		
Antimony	<0.2	<0.2	< 0.2		
Cyanide	< 0.005	∠ 0.005	< 0.005		
COD	708	18	29		
Tin	0.8	0.7	0.4		
Magnesium	4.4	0.17	0.13		
Titanium	<0.2	< 0.2	< 0.2		
Arseni <b>c</b>	< 0.005	< 0.005	< 0.005		
Bismuth	<0.10	<0.10	< 0.10		
Boron	00.077	<0.050	< 0.050		
Barium	2.5	< 0.5	< 0.5		
Calcium	35	2.9	. 1.9		
Zirconium	<b>∠2</b>	<2	≥ 2		
Chloride	3	2	9		
Mercury	*				

Methods of Analysis in Accordance with Table I, List of Approved Test Procedures, 40 CFR, Part 136, Analysis of Pollutants, June 9, 1975.

^{*}Reference Manistique Pulp & Paper Data indicating approx. 30 ppB Hg with non-detectable (<0.001) in Leachates.

APPENDIX

### LEACHING STUDY PROCEDURE

The sludge sample was treated according to a standardized test procedure used and recommended by the Wisconsin DNR - Solid Wastes which is being used to determine matter release from fill materials and is referred to as the "Shake Flask" method. A brief outline of the procedure is given below:

- 1. Mix sludge well to obtain homogenous sample.
- Duplicate 350 g. samples of sludge in 1400 ml. of pH 7.0 deionized water are prepared.
- 3. Samples of sludge and water are shaken twice daily for 15 seconds.
- 4. At the end of 24 hours, decant the samples through 0.45 membrane filters and wash each sludge layer with 350 ml. of pH 7.0 deionized water and decant washings to filter. Combine duplicates to give 3500 ml. of filtered sample for analysis.
- 5. Place filter and sludge back into original containers and add 1400 ml. of pH 7.0 deionized water. Shake for 15 seconds twice daily for three days. After 72 hours, membrane filter and wash each as before and combine to make a second 3500 ml. sample for analysis.
- 6. Repeat (5) except shake for 15 seconds twice daily for 6 days. After 154 hours, membrane filter and wash as before and combine to make a third 3500 ml. sample for analysis.
- 7. Filtrates are analysed separately for each parameter in accordance eith Table I List of Approved Test Procedures, 40 CFR Part 136 Analysis of Pollutants, June 9, 1975.



CHARTER MEMBER: ASSOCIATION OF SNVEGOSMENTAL LABORATORIES
4440 THE DRIVE HOLDING REDROS 4032

EARL L POSENBERG President H. R. THOMAS, JR. Director

June 18, 1976

Mr. Robert A. Carlson 555 South O'Plaine Road Gurnee, Illinois 60051

Re: S/L #4963

Dear Mr. Carlson:

Please find enclosed the laboratory data generated on the sample of paper mill sludge material we received for analysis.

Review of the laboratory data reveals substantial levels of toxic materials present. Namely, lead and mercury.

The other materials prosent and their respective concentrations are also at levels which are above normally allowable limits set for waste discharge.

Should some of these materials find their way into water sources, being used now, they could cause serious health disorders.

Also the immediate effect on the wildlife, both in and around the area, could be disastrous.

As more and more of the material is put into the waterway, the effects could have an even further reaching impact than is apparent now.

Thank you for using Suburban Laboratories' services and if you have any further questions, please feel free to call me.

Sincerely,

SUBURBAN LABORATORIES, INC.

H. N. Thomas, Jr.

Director

HET: In

341-6352 Gurase, Illinois 6003/108) 555 South O'Plaine Road Lettern matel SAMPLE THEORNATION Curlson - Studge Mesay #4963 - Paper MHT1 514d @, 4/26 (All analysis on dry basis) Sampling Method: By Client. X By Sub. Lab. Serco Anto Sampler ANALYSIS F4963 #4963 Terri Spiras mg/1 Hitrogen-Tot mg/1 11 ... - 211:11 - 411.11 Fix. Lat. Sol mg/1 Val. Ter. Sol 7.2 1 Hilton in-Om Insternation Studge the news mg/1 Marrie . ers. Sauds Mirtage. ma." Smithe Sal. ml'i 7 11 3.5. 551. mari i rig/1 Plan Shorte Francis 1 . · Sis. Sal me /1 tat. Sus. Sal mail La Har 5 ..... r :: maril ; Section to mq i r. .; at one pay o 7 mg - 7 d Antonio reg ! is secure 109.3 danual ria: I 5 3, 6, 45 L-1-7 N on House mg 1 . 3 Grease Francisco Catmagn Back Calcion C.11s.1100 -1 r = 21 ·. Coli. Culs/100 ml1 Chram-Torn ו' מוח Certs 100 ml Chrom-Hex. tai Cali. Chan-Fa. n-1 -4.45 15010.0 r:5 :1 Capper ng/i Sprt. Cand. Iron Zueeranty Zueeranty mg/i as CaCOz Lond mg/las CaCO3 Labourn my'l Tur. Hord. mg/1 on CaCO3 17:11 Magaesium Paul Cla Manager ... mg/1 Demonde Chiende 1.0-1 Processey. Michig ma/1 Magnine mg/! Potossium and - Toru mg.'i Silver arrian Francis ng/f Salaya fetrante im 1 . . 1 21.16 52.0, 6750 Non Restricted

Heigh A wrintion, Surveyed Nathons 13th Edition. Out residents are in accordance with the for

10.01

#### SUBURBAN LAI RATORIES, Inc.

CHEMICAL ANALYSTS SINCE 1936

4130 LITT DRIVE + Phone 312/544-3260 + HHEESIDE, HEIMORE GODE?

AID	90.0 rB80aT	
	* * * * * * * * *	

Mr. Robert A. Carlson 555 South O'Plaine Road Gurnee, Illinois 60051

P.O. Da.	 	~

Sample Recd	<u> 4/26/7</u>	6	: Tests Campleted		6/15/76			
Source	#4963	- Paper Mill	Sludge, 4/2	6			<del></del>	
		·						- (National de Care de
Comments	(All a	malysis on d	dry basis)	· · · · · · · · · · · · · · · · · · ·		·		
Sampling Method: By Client X By Sub			bSerca Auto-Sampler			Other	· ·	
		#4963				#4963		
Total Solids	mg/1	14303		li Nitroden-Tot	ma/L	· · · · · · · · · · · · · · · · · · ·	:	
Fix. Tat, Sol.	mq/1			Nitrogen-Amm				<del></del>
Vol. Tet. Sol.	mg/1			Nilrogen-Org	mg/1	<u> </u>	<del></del>	<u> </u>
Dres. Solids	mg/11			Noteita	mg/1		!	1
Sertle, Sol.	ml 1			Mitante	in 3/1	: !	-}	
Tot. Sus. Sol.	mg/[1			(Thorsphare Gogal)		en a management of	÷	·-·÷ ·
Fix. Sizs, Sol.	mg/lj			Phasphar (Outa)	me T			
Yol. Sus. Sol.				Softane	- mg/;		i	
	1	· · · · · · · · · · · · · · · · · · ·		1 5,11673	nig/4			
800	mg/1			Soline	mg/1			· · · · · · · · · · · · · · · · · · ·
[ 000	mg/if	-		f Algerbase	rig.(!			
DO	mg.ZT	ii		Antenions	mg/T	· · · · - · ·		
	1		1	Arsenic	arg (I			
Phenols	l/Sgu			Barrum	sum (1		:	·····
ABS or LAS	mg/∏			3 acyllina	mg/1	·		!
O'ls & Greases	mg/		1	Daran	ng/I		1	
	1		1	Cuderrom	ni ni l			1
Tot Brei. C	ells/100 mi¦			l Calcium	mg/l			
_ Tot. Coli. C	ells/100 ml]			3. Chrom-Torn!				
Freal Coli. C	otts/100 mlj		<u> </u>	Chrom-Hex.	nig√i.	: 	<u> </u>	<u> </u>
Lignin %		4.45		Chrom-Tri.	mą/l:	:		i
l phi				Copper	Fig.(1)		<u> </u>	1
Spec. Cond.				Iran	ng/l	<u> </u>	<u> </u>	
Alkelinity mg/1	os CoCO3			Lend	mg (f.	86.5		
1	ns CaCO3 į		<u> </u>	Lithium	mg/1	· · · · · - ·	ï	
Tot. Hord. mg/l	las CaCO3 j			Magnesium	mg (1	· ·		
Pesid. Cla	m <u>g/l</u>			Mangare ve	mq/4	·		<u> </u>
Bromide	mg/1			Moreury	ug. 1	g 53.1		
Chlorine	mg/1			Nickei	mg (1)	:		
Fluorian	mg/ }			Potassium *		i 	:	
Cyanide - Torol	mg/1			ii Silver			-	
مجر عند	ag/1			Sadosm	ms /1	·		
Li. mrs h		64.27		Streetram	ma I	: ! 	·	
1.351 7.		2116		A Tim	mg (lt			
LCHLLLase_1		1 <u>0.0</u> 11		% Zine	1 mg 5	e .61.9.		1

Date 1 5/19/76 th